Author: G. P. Blair, S. J. Magee
Title: Non-Isentropic Analysis of Varying Area Flow in Engine Ducting
Date: September 13-16 1993
Published: SAE International Off-Highway and Power-plant Congress - Milwaukee, Wisconsin - SAE 932399
Abstract: In two previous papers to this Society, an 'Alternative' method was presented for the prediction of the unsteady gas flow behavior through a reciprocating internal combustion engine. The computational procedures led further to the prediction of the overall performance characteristics of the power unit, be it operating on a two or a four-stroke cycle. Correlation with measurements was given to illustrate its effectiveness and accuracy.

In the ducts of such engines there are inevitably sectional changes of area, which are either gradual or sudden. A tapered pipe is typical of a gradual area change whereas a throttle or a turbocharger nozzle represents a sudden area change. In those previous papers it was indicated that a fuller explanation, of the theoretical procedures required to predict accurately the unsteady gas flow in such duct sections would be given in a later paper to the Society; this is that necessary publication.

The theory of gradual and sudden area changes is presented, together with computational illustrations of its application to real geometrical cases. The theory includes non-isentropic effects at such area changes and inherently solves the mass continuity, energy and momentum equations at each section.

You may obtain a copy of this paper by calling SAE Customer Service at 1-877-606-7323 (toll-free in the U.S. and Canada) or 1-724-776-4970.